176 research outputs found

    A self-assembled monolayer-assisted surface microfabrication and release technique

    Get PDF
    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of dodecyltrichlorosilane reduces the adhesion between the SiO2 substrate surface and a 100-nm thick evaporated aluminum film. A 100-mm thick layer of photoplastic SU-8, which is spun and structured by lithography and development on top of the monolayer/aluminum sandwich layer, can be mechanically lifted off the surface with the aluminum layer. The organic monolayer provides enough stability for the microfabrication process including photoresist spinning and thermal steps. The aluminum film has a surface roughness of less than 1 nm rms as measured by AFM. Photolithographic microstructuring of the aluminum film prior to the photoplastic process allows for transparent embedded bottom-side metal electrodes. As first application example, molded nanoprobes for scanning near-field optical microscopy, has been demonstrated using this technique

    Surface Modification With Self-Assembled Monolayers for Nanoscale Replication of Photoplastic MEMS

    Get PDF
    A release technique that enables to lift microfabricated structures mechanically off the surface without using wet chemistry is presented. A self-assembled monolayer of dodecyltrichlorosilane forms a very uniform 1.5-nm-thick anti-adhesion coating on the silicon dioxide surface, on full wafer scale. The structural layers are formed directly onto the organic layer. They consist here of a 100-nm-thick aluminum film and a high-aspect ratio photoplastic SU-8 structure. After the microfabrication the structure can be lifted off the surface together with the aluminum layer. This generic technique was used to make a variety of novel structures. First, aluminum electrodes that are embedded in plastic are made using lithography, etching and surface transfer techniques. Second, using a patterned monolayer as defined by microcontact printing, resulted in a spatial variation of the surface adhesion forces. This was used to directly transfer the stamped pattern into a metal structure without using additional transfer etching steps. Third, the monolayer’s ability to cover surface features down to nanometer scale was exploited to replicate sharp surface molds into metal coated photoplastic tips with 30-nm radii for use in scanning probe instruments such as near-field optical techniques. The advantage compared to standard sacrificial layer techniques is the ability of replication at the nanoscale and the absence of etchants or solvents in the final process steps

    Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder

    Get PDF
    The aim of this study was to increase knowledge on therapy and educational objectives professionals work on with children with autism spectrum disorder (ASD) and to identify corresponding state of the art robots. Focus group sessions (n = 9) with ASD professionals (n = 53) from nine organisations were carried out to create an objectives overview, followed by a systematic literature study to identify state of the art robots matching these objectives. Professionals identified many ASD objectives (n = 74) in 9 different domains. State of the art robots addressed 24 of these objectives in 8 domains. Robots can potentially be applied to a large scope of objectives for children with ASD. This objectives overview functions as a base to guide development of robot interventions for these children

    Hierarchical Multivalent Effects Control Influenza Host Specificity

    Get PDF
    Understanding how emerging influenza viruses recognize host cells is critical in evaluating their zoonotic potential, pathogenicity, and transmissibility between humans. The surface of the influenza virus is covered with hemagglutinin (HA) proteins that can form multiple interactions with sialic acid-terminated glycans on the host cell surface. This multivalent binding affects the selectivity of the virus in ways that cannot be predicted from the individual receptor-ligand interactions alone. Here, we show that the intrinsic structural and energetic differences between the interactions of avian- or human-type receptors with influenza HA translate from individual site affinity and orientation through receptor length and density on the surface into virus avidity and specificity. We introduce a method to measure virus avidity using receptor density gradients. We found that influenza viruses attached stably to a surface at receptor densities that correspond to a minimum number of approximately 8 HA-glycan interactions, but more interactions were required if the receptors were short and human-type. Thus, the avidity and specificity of influenza viruses for a host cell depend not on the sialic acid linkage alone but on a combination of linkage and the length and density of receptors on the cell surface. Our findings suggest that threshold receptor densities play a key role in virus tropism, which is a predicting factor for both their virulence and zoonotic potential.Fil: Overeem, Nico J.. University of Twente; Países BajosFil: Hamming, P. H. Erik. University of Twente; Países BajosFil: Grant, Oliver C.. University of Georgia; Estados UnidosFil: Di Iorio, Daniele. University of Twente; Países BajosFil: Tieke, Malte. Utrecht University; Países BajosFil: Bertolino, María Candelaria. University of Twente; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Li, Zeshi. Utrecht University; Países BajosFil: Vos, Gaël. Utrecht University; Países BajosFil: de Vries, Robert P.. Utrecht University; Países BajosFil: Woods, Robert J.. University of Georgia; Estados UnidosFil: Tito, Nicholas B.. Electric Ant Laboratory; Países BajosFil: Boons, Geert-Jan P. H.. Utrecht University; Países BajosFil: van der Vries, Erhard. Utrecht University; Países BajosFil: Huskens, Jurriaan. University of Twente; Países Bajo

    Lignosulfonic Acid Exhibits Broadly Anti-HIV-1 Activity – Potential as a Microbicide Candidate for the Prevention of HIV-1 Sexual Transmission

    Get PDF
    Some secondary metabolites from plants show to have potent inhibitory activities against microbial pathogens, such as human immunodeficiency virus (HIV), herpes simplex virus (HSV), Treponema pallidum, Neisseria gonorrhoeae, etc. Here we report that lignosulfonic acid (LSA), a polymeric lignin derivative, exhibits potent and broad activity against HIV-1 isolates of diverse subtypes including two North America strains and a number of Chinese clinical isolates values ranging from 21.4 to 633 nM. Distinct from other polyanions, LSA functions as an entry inhibitor with multiple targets on viral gp120 as well as on host receptor CD4 and co-receptors CCR5/CXCR4. LSA blocks viral entry as determined by time-of-drug addiction and cell-cell fusion assays. Moreover, LSA inhibits CD4-gp120 interaction by blocking the binding of antibodies specific for CD4-binding sites (CD4bs) and for the V3 loop of gp120. Similarly, LSA interacts with CCR5 and CXCR4 via its inhibition of specific anti-CCR5 and anti-CXCR4 antibodies, respectively. Interestingly, the combination of LSA with AZT and Nevirapine exhibits synergism in viral inhibition. For the purpose of microbicide development, LSA displays low in vitro cytotoxicity to human genital tract epithelial cells, does not stimulate NF-κB activation and has no significant up-regulation of IL-1α/β and IL-8 as compared with N-9. Lastly, LSA shows no adverse effect on the epithelial integrity and the junctional protein expression. Taken together, our findings suggest that LSA can be a potential candidate for tropical microbicide

    One-step immunopurification and lectinochemical characterization of the Duffy atypical chemokine receptor from human erythrocytes

    Get PDF
    Duffy antigen/receptor for chemokines (DARC) is a glycosylated seven-transmembrane protein acting as a blood group antigen, a chemokine binding protein and a receptor for Plasmodium vivax malaria parasite. It is present on erythrocytes and endothelial cells of postcapillary venules. The N-terminal extracellular domain of the Duffy glycoprotein carries Fya/Fyb blood group antigens and Fy6 linear epitope recognized by monoclonal antibodies. Previously, we have shown that recombinant Duffy protein expressed in K562 cells has three N-linked oligosaccharide chains, which are mainly of complex-type. Here we report a one-step purification method of Duffy protein from human erythrocytes. DARC was extracted from erythrocyte membranes in the presence of 1% n-dodecyl-β-D-maltoside (DDM) and 0.05% cholesteryl hemisuccinate (CHS) and purified by affinity chromatography using immobilized anti-Fy6 2C3 mouse monoclonal antibody. Duffy glycoprotein was eluted from the column with synthetic DFEDVWN peptide containing epitope for 2C3 monoclonal antibody. In this single-step immunoaffinity purification method we obtained highly purified DARC, which migrates in SDS-polyacrylamide gel as a major diffuse band corresponding to a molecular mass of 40–47 kDa. In ELISA purified Duffy glycoprotein binds anti-Duffy antibodies recognizing epitopes located on distinct regions of the molecule. Results of circular dichroism measurement indicate that purified DARC has a high content of α-helical secondary structure typical for chemokine receptors. Analysis of DARC glycans performed by means of lectin blotting and glycosidase digestion suggests that native Duffy N-glycans are mostly triantennary complex-type, terminated with α2-3- and α2-6-linked sialic acid residues with bisecting GlcNAc and α1-6-linked fucose at the core
    corecore